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Abstract Regression from high dimensional observation vectors is particularly dif-
ficult when training data is limited. Partial least squares (PLS) partly solves the high
dimensional regression problem by projecting the data to latent variables space. The
key issue in PLS is the computation of weight vector which describes the covariance
between the responses and observations. For small-sample-size and high-dimensional
regression problem, the covariance estimation is usually inaccurate and the correlated
components in the predictors will distort the PLS weight. In this paper, we propose a
sparse matrix transform (SMT) based PLS (SMT-PLS) method for high-dimensional
spectroscopy regression. In SMT-PLS, the observation data is first decorrelated by
SMT. Then, in the decorrelated data space, the PLS loading weight is computed by
least squares regression. SMT technique provides an accurate data covariance esti-
mation, which can overcome the effect of small-sample-size and benefit both the
PLS weight computation and subsequent regression prediction. The proposed SMT-
PLS method is compared, in terms of root mean square errors of prediction, to PLS,
Power PLS and PLS with orthogonal scatter correction on four real spectroscopic data
sets. Experimental results demonstrate the efficacy and effectiveness of our proposed
method.
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1 Introduction

Considering the general linear regression, given XT = [x1, . . . , xn]p×n with n sam-
ples and p variables, the response y is predicted by: y = Xβ. When X is full rank, the
regression coefficients β can be solved by ordinary least squares (OLS) which uses
the sample covariance. However, when the number of variables is large compared
to the number of observations, the sample covariance is singular and OLS approach
is unstable and no longer feasible. Different regularization and shrinkage methods,
such as ridge regression and Lasso [1], are developed to cope with the ill-posed
problems.

Partial least squares (PLS) [2] is another alternative method for addressing the high-
dimensional small-sample regression problem. PLS is one of the most widely used
multivariate calibration methods [3]. The intention of PLS is to summarize the high-
dimensional predictor variables into a smaller set of uncorrelated components (called
latent variables), which have a maximal covariance to the responses. It is followed by
a regression step where the latent variables are used to predict the responses.

In the implementation of PLS, the well-known nonlinear iterative partial least
squares (NIPALS) algorithm [2] is commonly used for computation of the successive
PLS components. The weight vector is first computed, then the scores and loadings
can be solved successively. The crux is the computation of weight vector. The PLS
weight is proportional to the covariances between the responses and observations and
is computed by using least squares regression. For high-dimensional small-sample
spectroscopy regression, the correlated components in predictor variables will affect
the least squares computation of PLS weight. In addition, the limited training samples
makes the ordinary least squares regression inaccurate because the sample covariance
matrix tends to distort the eigenstructure of the true covariance matrix in this case
of inadequate data. Thus, it needs to eliminate the effect of correlated components
and small-sample-size problem in the computation of PLS weight and covariance
estimation.

Sparse matrix transform (SMT) is recently proposed to estimate the covariance
matrix [4–6]. The covariance is constrained to be have an eigen-decomposition that
can be represented as an SMT. The SMT is formed by a product of pairwise coordinate
Givens rotations. Under this framework, the covariance can be efficiently estimated
using a simple recursive local optimization procedure [4]. And the estimated covari-
ance is always positive definite and well-conditioned. Previous results have shown that
SMT method is very accurate even in small-sample-size case, and yields good results
in covariance estimation and analysis of high dimensional signals [4–6].

Motivated by the superiority performance of SMT in accurate covariance estimation
for small-sample and high-dimensional problem, we propose a sparse matrix transform
based PLS (SMT-PLS) method for spectroscopy regression. SMT brings accurate
data covariance and its eigenstructure estimation, which can be used to decorrelate
the high dimensional spectroscopy data. It thus alleviates the effect of correlated
variables to the least squares computation of PLS weight. Then PLS weight updating
can be performed by least squares in the decorrelated data space. Finally, the obatined
regression coefficient based on the decorrelated PLS model is asymptotically more
efficient than the estimator based on the original PLS model.
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2 The Algorithm

2.1 Sparse matrix transform

Sparse matrix transform (SMT) is originally designed to estimate the covariance matrix
[4–6]. Consider a set of n samples {x1, x2, . . . , xn} taking values in a p-dimensional
space, and assume xk has zero mean. The sample covariance is computed by S =
XT X/n, where XT = [x1, x2, . . . , xn], and S is an unbiased estimation of the true
covariance matrix R. The eigen-decomposition of R is:

R = E�ET (1)

where E is the orthogonal eigenvector matrix and � is the diagonal matrix of eigen-
values. Within the maximum-likelihood framework [4], the estimates of E and �

are

Ê = arg min
E∈Ω

{∣∣diag(ETSE)
∣∣} (2)

Λ̂ = diag(ÊT SÊ) (3)

where Ω is the set of allowed orthogonal transforms, and R̂ = ÊΛ̂ÊT is the maximum-
likelihood estimation of the covariance. If Ω is the set of all orthogonal matrices and S
is full rank, the maximum-likelihood estimate of the covariance is given by the sample
covariance: R̂ = S.

The key idea of SMT is to restrict the set Ω [5,6] such that E is represented as the
product of finite (or ‘sparse’) K Givens rotations:

E = E1 E2 · · · EK (4)

each of which is a simple rotation of angle θk about two axes ik and jk . That is, each
rotation is given by a matrix of the form:

Ek = I +Θ(ik, jk, θk) (5)

where

Θ(ik, jk, θk)rs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(θk)− 1, if r = s = ik or r = s = jk
sin(θk), if r = ik and s = jk
− sin(θk), if r = jk and s = ik

0, otherwise.

The aim is to produce an estimation of the eigenvector matrix that is sparsely
parametrized by a limited number of rotations. The coordinates, ik and jk , angle θk ,
and hence Ek and �k can be iteratively determined by a greedy alternative optimization
method [4–6]. At each iteration, two most correlated coordinates, ik and jk are first
determined by minimizing the cost of (2), which results in
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(ik, jk)← arg min
(i, j)

(
1− S2

i j

Sii S j j

)
(6)

Once ik and jk are determined, the Givens rotation E∗k is given by

E∗k = I +Θ(ik, jk, θk)

where θk = 1
2 atan(−2Sik jk , Sik ik − S jk jk ). After K Givens rotations, the eigen-

decomposition results of the covariance Ê and Λ̂ can be obtained.
When the number of data samples is small, the sample covariance estimator is

singular and will over-fit the data. While SMT estimator is usually positive definite as
it regularizes the maximum-likelihood estimate (2) by constraining feasible set Ω to
be the set of orthonormal transforms that can be represented as an SMT of order K .
The regularization makes the estimator well-conditioned. By varying the order K of
the SMT, it can reduce or increase the regularizing constraint on the covariance.

2.2 Sparse matrix transform for PLS

The well-known nonlinear iterative partial least squares (NIPALS) algorithm [2] is
commonly used for computation of the successive PLS components in order to max-
imize the covariance structure between the predictors and the responses [7]. Let X
be the n × p predictors matrix, whose rows and columns correspond to samples and
spectral variables respectively, and y be the n × 1 response vector, PLS finds unit
weight vector w ∈ Rp such that:

[cov(t, y)]2 = [cov(Xw, y)]2 = wT XTyyT Xw (7)

is maximized.
It can be shown that the desired weight vector:

ŵ = XTy/‖XTy‖ (8)

Based on NIPALS, the scores and loadings can be solved successively. The weight
is proportional to the covariances between y and the corresponding X -variables. The
correlated components in X -variables will affect the computation of PLS weight. In
this paper, SMT technique is used to decorrelate the observations and then the PLS
weight updating is performed on the decorrelated data space.

The key idea is to use SMT to decorrelate the spectroscopy data. Next, we investigate
the effects of correlated components on PLS regression. The observations X can be
represented as:

X = T PT (9)

where score matrix T = [t1, . . . , tq ] and loading matrix P = [p1, . . . , pq ].
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In NIPALS, the score ti , weight wi , and data Xi have the following relations:

ti = Xi wi ,

Xi+1 = Xi − ti pT
i

Based on the iteration formulation, we can obtain ti = Xhi , where h1 = w1 and
hi = (I − w1pT

1 ) · · · (I − wi−1pT
i−1) for i ≥ 2. Denote H = [h1, . . . , hq ], then

T = X H (10)

Based on Eq. (9), the linear relations can express as:

y = Xβ + e = T PTβ + e = T α + e (11)

The least squares solution of Eq. (11) is

α̂ = (T TT )−1T Ty (12)

Based on Eq. (10), the fitted value of y is

y = T α̂ = X H(T TT )−1 HT XTy (13)

So, the PLS regression coefficient vector β̂ is

β̂ = H(T TT )−1 HT XTy = H(T TT )−1 HT XT X β̂L S (14)

where β̂L S is the least squares solution. Denote the true regression coefficient as β0,
based on the bias-variance decomposition, the mean squared error (MSE) of β̂ can be
computed:

M SE(β̂) = E[(β̂ − β0)
T(β̂ − β0)] = σ 2

q∑
i=1

hT
i hi

tT
i ti
+ ‖E β̂ − β0‖2 (15)

where q is the number of scores and σ = Var(e) is the noise variance.
Based on singularity value decomposition (SVD), X = U SV T .= T PT, where

T = U S and P = V . When there exists high collinearity in the data set X , some
eigenvalues si of data X will very small and the corresponding components tT

i ti =
s2

i ≈ 0, which makes the M SE(β̂) in Eq. (15) very large. So, if all the components are
introduced into the model (as in least squares model), the estimator will produce large
variance. To tackle this problem, PCR and PLS use k(k < q) principal components
to construct the model, leaving out the components with very small variance so that
the noise can be removed and the collinearity of the data set can be reduced [8].

Form the above analysis, we can see that the correlated components in the predictors
pose a serious threat to the regression analysis. The corresponding estimator produces
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large variance and hence large error. To decrease the MSE and achieve an accurate
and robust prediction, the observation data should be decorrelated.

In order to decorrelate the high dimensional spectroscopic data, we first use a sparse
matrix transform technique to estimate the eigenvector and eigenvalue matrices of data
covariance as Ê and Λ̂, respectively. Then, the data are whitened as follows:

X̃ = X ÊΛ̂−
1
2 (16)

Note that, for the decorrelated data X̃ , the score vector satisfies t̃T
i t̃i = s̃2

i ≈ 1.
Thus, the unwanted large variance will not appear in the MSE. So, the estimator based
on decorelated data is asymptotically more efficient than the estimator based on the
original correlated data.

Then, we solve the PLS weight based on the decorrelated data

w̃ = 1

n
X̃Ty (17)

Note that, the weight w̃ actually describes the relation between y and X̃ , that is
y = X̃w̃ as X̃T X̃/n = I for the whitened observations.

The PLS weight based on SMT can be expressed as

w = ÊΛ̂−
1
2 w̃ (18)

Algorithm 1 describes the sparse matrix transform based partial least squares (SMT-
PLS) algorithm. In extracting each SMT-PLS component, SMT is first used to per-
form an eigen-decomposition of covariance matrix, and the estimated eigenvector and
eigenvalue matrices are used to decorelate the observations. Then, the PLS weight
vector is computed based on the decorrelated data, and the score and loading vec-
tors are resolved successively. The above procedures are repeated until the desired
components are extracted.

Algorithm 1 SMT-PLS algorithm for weight updating.
Given X , y, and K rotations.
Let X0 = X , a = 1.
1: Perform SMT on the observations: R̂Xa−1 = ÊΛ̂ÊT

2: Decorrelate the data: X̃a−1 = Xa−1 ÊΛ̂
− 1

2

3: Solve the weight on decorrelated data: w̃a = X̃T
a−1y

4: Compute the SMT-PLS weight: wa = ÊΛ̂
− 1

2 w̃a
5: Normalize: wa = wa/‖wa‖.
6: Calculate the scores ta = Xwa and loadings pa = XTta .
7: Deflate: Xa = Xa−1 − tapT

a .
8: Let a = a + 1, and return to step 1 until A components are extracted.
Note: when K = 0, SMT is not performed and this algorithm is the PLS1.
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3 Experimental

3.1 Data sets

Data set 1 consists of NIR spectra from 310 pharmaceutical tablet samples with a
relative active substance content (%, w/w) in the range of 4.6–9.8 % [9,10]. The
transmittance spectra have 404 variables collected in the range of 7,400–10,507 cm−1.
The 310 NIR spectra are divided into 210 calibration samples and 100 prediction
samples based on Kennard–Stone (KS) algorithm [11].

Data set 2 is from the Software Shootout at the IDRC98 containing NIR spectra of
141 fescue grass powdered (dry ground) samples with specified carbon, nitrogen and
sulphur contents ranging from 29.6 to 40.9, 1.1 to 6.6 and 0.3 to 1.7 %, respectively.
The related chemical values are the average of the blind duplicates determined on a
LECO CNS-2000 Carbon, Nitrogen and Sulphur Analyzer [9].

Data set 3 consists of 32 marzipan FTIR spectra with traditional moisture and
sugar contents ranging from 7 to 19, and 33 to 68 %, respectively. The spectra in the
region 6,500–650 cm−1 have been recorded with Perkin Elmer System 2000, equipped
with the horizonal ATR Sampling Accessory (ZnSe cell) [9,12]. The 32 marzipan IR
spectra are divided into 24 calibration samples and 8 prediction samples based on the
KS algorithm.

Data set 4 consists of NIR transmittance spectra of meat samples [13]. The spectra
have been recorded on a Tecator Infratec Food and Feed Analyzer working in the
wavelength range 850–1,050 nm. For each meat sample the data consists of a 100
channel spectrum of absorbances and the contents of moisture (water), fat and protein.
The three contents, measured in percent, are determined by analytic chemistry. The
data contain 172 training samples and 43 testing samples.

3.2 Model selection

The choice of latent variable number in the calibration model will be a balance between
minimizing the predicted residual error sum of squares (PRESS) and limiting the
model complexity. The smallest model (fewest number of latent variables) such that
the PRESS for this model is not significantly greater than the minimum PRESS is
adopted. We use the F-test criterion pointed out by Haaland and Thomas [14] to
test the significance of incremental changes in PRESS. In this work, F-test at 95 %
confidence level is employed.

The comparison of the accuracy among different models is done by using root mean
square errors of prediction (RMSEP), defined by:

RMSEP =
√√√√ 1

N

N∑
i=1

(yi − ŷi )2

where yi and ŷi are the measured and estimated values of the studied property for a
sample, respectively, and N is the number of samples in the prediction set.
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4 Results and discussion

4.1 Pharmaceutical tablet NIR data set

4.1.1 Covariance estimation

We first show that SMT can provide accurate covariance estimation for spectroscopic
data. For this purpose, we set the true covariance R as the sample covariance S com-
puted using all the 310 Pharmaceutical tablet NIR samples, and then randomly sample
M observations from the 310 samples to estimate the covariance. We perform covari-
ance estimation using SMT method and the following regularization method:

R̂ = αS + (1− α)diag(S) (19)

The sample sizes M ranging from 20 to 80 are considered. The Kullback-Leibler (KL)
distance [5] which measures the error between the estimated and true distribution is
used to assess the performance of the two covariance estimation methods. Figure 1
shows the KL distances of the two estimators as a function the sample number M . The
error bars indicate the standard deviation of the KL distance due to random variation
in the sample selection. It clearly shows that the KL distances of SMT covariance esti-
mation are consistently and substantially smaller than that of the regularized method
(19).

4.1.2 The effect of calibration samples

To evaluate the prediction performance of the proposed SMT-PLS method in the
challenging situations with high dimensionality and small-sized calibration samples,
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Fig. 1 Kullback–Leibler distance versus sample size
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Fig. 2 RMSEP versus sample size for SMT-PLS, PLS and RR

we use parts of the original 210 calibration samples to build the model. The proposed
SMT-PLS is compared with PLS and ridge regression (RR) methods. The RMSEP
results as a function of the calibration sample number ranging from 20 to 210 are
shown in Fig. 2, where the number of latent variables in PLS and SMT-PLS are
chosen as 4 and the regularization parameter in RR is set as 10−4. It can be seen that
SMT-PLS provides consistently smaller RMSEPs than the other two methods when
the number of training samples is not less than 30. It demonstrates that SMT-PLS can
solve the high dimensional spectroscopy regression problem even with a small number
of training samples.

4.1.3 The effect of SMT model orders

In the following, we investigate the effect of SMT model order K (i.e., the number
of Givens rotations) on the SMT-PLS regression model. We show the 10-fold cross
validation errors (RMSECV) versus different rotations K in Fig. 3, where the model
order K changes from 10 to 3,000. It can be seen that the RMSECVs show an overall
downtrend as the order K increases and are stable when K is not less than 500. From
the changes of RMSECV results, we empirically set K to be 500.

4.1.4 Comparison of different data transform methods

The key point in SMT-PLS is the data decorrelation transform in each PLS term. In
this part, we will compare SMT-PLS with modified PLS (MPLS) [15] and singular
value decomposition (SVD) based data decorrelation transform PLS method (SVD-
PLS). The MPLS method scales the spectroscopic data at each wavelength to have
a standard deviation of 1 before each PLS term. The SVD method can also provide
a diagonal structure of the covariance. In SVD-PLS, we use SVD to decorrelate the
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Table 1 RMSEP of PLS,
MPLS, SVD-PLS, SMT-PLS

PLS MPLS SVD-PLS SMT-PLS

RMSEP 0.3814 1.2553 Inf 0.3528

RMSEPpart 0.5599 1.2851 0.7152 0.5303

data before each PLS term. The models are build on the calibration set (210 samples),
and the prediction results of RMSEP values are shown in Table 1. As the sample
dimension (variable number) is 404, the data covariance is singular and SVD-PLS
method provides meaningless result. So, we use the first 100 dimensions to build
the models again, and the results is also recorded (’RMSEPpart’). From the table, it
can be seen that MPLS and SVD-PLS do not improve the PLS method. Compared
to SVD, SMT method can obtain positive definite and well-conditioned covariance
estimator even with limited samples. Moreover, SMT estimator is more accurate than
SVD even if the covariance matrix is nonsingular because SMT can be considered as
a regularized SVD method [5]. Compared to PLS, SMT-PLS provides more accurate
prediction. The plots of real values versus predicted values of the active substance
content for PLS and SMT-PLS models are shown in Fig. 4. The plots show in a nice
way that the fits and predictions of SMT-PLS are more accurate.

4.2 Fescue grass NIR data set

The 141 grass NIR spectra are divided into 100 calibration samples and 41 prediction
samples based on the KS algorithm. In order to investigate the performance in small-
sample-size case, we also consider the regression in the case of 41 calibration samples
and 100 prediction samples, where the number of calibration samples is relatively
small compared to the high dimensionality (1,050 dimensions) and also smaller than
the number of prediction samples.
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Fig. 4 Real values versus predicted values of the active substance content: a PLS; b SMT-PLS
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Fig. 5 RMSEP results on NIR grass data set with different number of calibration samples. a 100 calibration
samples, b 41 calibration samples

As the proposed SMT-PLS focuses on the weight computation and the effect of
correlated components, Power PLS (PPLS) and PLS with orthogonal scatter correction
(PLS2OSC) are compared. PPLS [16] aims to increase flexibility in the computation of
weights. It computes the weight vector by taking powers of correlations and standard
deviations, which neutralizes the influence of dominance of irrelevant X -variance
and spurious y-correlations. PLS2OSC [17] removes the non-correlated systematic
variation, which improves the interpretation of PLS and reduces model complexity.

We build the prediction model for carbon, nitrogen, and sulphur, respectively. The
optimal number of latent variables is chosen based on the 10-fold cross validation.
The comparisons of predicted RMSEP results of PLS, PPLS, PLS2OSC and SMT-
PLS are shown in Fig. 5, where the models built on 100 calibration samples and 41
calibration samples are considered, respectively. It can be seen that PPLS, PLS2OSC
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Fig. 6 RMSEP of PLS, PPLS, PLS2OSC and SMT-PLS on different latent variables for marzipan IR data
set: a moisture; b sugar

Table 2 RMSEP results on
Meat NIR data set

PLS PPLS PLS2OSC SMT-PLS

Moisture 2.761 2.776 2.189 1.774

Fat 3.048 2.686 2.594 2.259

Protein 0.934 0.887 0.615 0.684

and SMT-PLS improve PLS in both cases. Compared to PPLS and PLS2OSC, SMT-
PLS provides better predictions for the carbon and nitrogen prediction tasks, and
comparable results for sulphur content prediction. In both cases with large and small
number of training samples, SMT-PLS provides better overall performance.

4.3 Marzipan IR data set

The comparisons of predicted RMSEP-values for PLS, PPLS, PLS2OSC and SMT-
PLS on Marzipan IR data set with different latent variables are shown in Fig. 6. It can
be seen from the figure that on sugar content, SMT-PLS outperforms PLS, PPLS and
PLS2OSC for almost all the latent variables. On moisture content, SMT-PLS achieves
better results when the number of latent variables is smaller than 5. Because there
are only 24 calibration samples compared to 950 dimensions, the results show that
SMT-PLS is suitable for high-dimensional and small-sample regression.

4.4 Meat NIR data set

The predicted results for moisture, fat, protein on the optimal latent variables are
shown in Table 2. Except for the protein prediction of PLS2OSC, SMT-PLS achieves
consistently better results than other three methods. The results demonstrate that the
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regression on the decorrelated data can provide better results, and the PLS weight
updating based on SMT indeed plays a role in the prediction.

5 Conclusions

In this paper, we have proposed a new weight updating strategy in PLS regression
based on SMT. SMT technique provides accurate data covariance and its eigenstruc-
ture estimation which benefits the PLS weight computation and subsequent regression
analysis. In particular, the SMT decorelation operation alleviates the effect of corre-
lated variables to the least squares computation of PLS weight, and the obtained
regression coefficient based on the decorrelated data is asymptotically more efficient
than the estimator based on the original data. Experimental results demonstrate that
SMT-PLS provides better predictions on different spectroscopic data sets.

Note that, SMT can be considered as a preprocessing step for decorrelating the data.
When the data is decorrelated, different regularized regression procedures can be used
in resolving the PLS weight, such as Lasso and shrinkage methods (soft-threshold or
hard-threshold). If the sparse solution is preferred, it should pay more attention on
the parameter selection, such as the Lasso parameter (regularization parameter or the
number of nonzero elements), the soft or hard thresholds in shrinkage methods.
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